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Abstract

Multitrophic interactions are inherent to the ecological networks of terrestrial ecosystems and can exhibit dynamic temporal
changes within a season. In floral communities, pollen and nectar act as hubs for various microorganisms, including fungi
that can alter plant—pollinator interactions. In mixed pollen samples collected by Apis mellifera L., the associations between
plants and fungi foraged by bees may be complex and not yet fully characterized. Exploring the temporal succession of the
multitrophic interaction is an area that requires further investigation. Forty-two pollen samples were retrieved from 13 hives
dispersed in urban and peri-urban locations in Southern Ontario Canada where the honey bee is not native. Using metabar-
coding of the ITS region, we identified a total of 77 plants and 46 fungi. Among the foraged plants visited, the top ten were
all non-native or invasive taxa for Southern Ontario, with Trifolium repens L. and Sonchus arvensis L. as most common taxa.
For fungal taxa, the main yeasts and molds were identified as Starmerella and Mucor taxa. Plant richness was found to have
a significant association with fungal richness. Moreover, plant and fungal taxa richness and Shannon diversity increased
with time from spring to late summer. Only plant taxa composition varied over the active foraging season suggesting a more
homogenous fungal taxa community. Diverse flowers can further play a role in the spread of fungal organisms having a
variety of ecological functions and trophic levels. The study of their interactions with flowers, pollinators, and humans, is
deserving of more investigation.
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Introduction Anthophila) are the most efficient pollen transporters due to

morphological and behavioral adaptations, e.g. the presence

Animal vectorization of pollen is essential for maintain-
ing floral communities in temperate and tropical regions
(Ollerton et al. 2011). Among animals, bees (Hymenoptera:
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of scopae (carrying the pollen), and a specialized pollen and
nectar diet. Among all bee species, the western honey bee,
Apis mellifera L. (Hymenoptera: Apidae), is one of the most
common and globally widespread. This social bee species
has been domesticated and managed mainly for agricultural
pollination, honey production, as well as other hive products
(Pirk et al. 2017). Honey bee workers are essential for pro-
viding food for the colony throughout the year and, as gen-
eralists, visit many different plant species in search of pollen
and nectar (Hung et al. 2018). If food is abundant, honey
bees prefer certain flower species over others. In contrast, if
the abundance or quality of local flowers is insufficient, for-
agers must compensate by visiting more plant species over
larger spatial distances (Garbuzov et al. 2015). Moreover,
the specific foraging strategy of honey bees has been used
as a bioindicator to monitor the quality of the environment,
e.g. heavy-metal concentrations in honey (Zaric et al. 2018)
or the presence of metallothioneins and pesticides in pollen
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(Badiou-Bénéteau et al. 2013). Due to the number of flowers
visited per bee and per hive, honey bees can also be deployed
to monitor pathogens and used as a biocontrol delivery agent
of fungicides to flowers, e.g. against the gray mold Botrytis
cinerea Pers. that damages strawberries (Hokkanen et al.
2015).

The flowering plants visited by the honey bee workers
contain a unique microbiome, including some fungi, oomy-
cetes, bacteria, and viruses, which have evolved various dis-
persal strategies enabling attachment to visiting pollinators
(Manirajan 2018). Honey bee workers carry microorganisms
not only from flower to flower but also from flowers to the
colony via collected nectar and pollen (Figueroa et al. 2020).
Consumption of more diverse floral resources can improve
the immunity of honey bees (Di Pasquale et al. 2013). For
example, when Lactobacillus bacteria were included in the
honey bee diet, honey bee health improved reducing bacte-
rial dispersal (Pietropaoli et al. 2022). Floral nectar is indeed
known to include a high abundance and diversity of bacte-
rial and fungal (e.g. yeast) communities that can withstand
high sugar levels (Aizenberg-Gershtein et al. 2013). After
anthesis, flowers are rapidly colonized and dominated by
specific yeasts arriving by air or via animal-vectored path-
ways (Klaps et al. 2020). For instance, a part of fungal com-
munities are driven by regurgitation of collected nectar
to moisten and glue the pollen grains to shape corbicular
pollen and after the transport to the colony as bee bread
(Gilliam 1997). Moreover, the foraging behavior of honey-
bees is also influenced by the volatile organic compounds
(VOCs) of the flower that may result from the modification
of nectar chemistry by flower-inhabiting fungi. For exam-
ple, the presence of the yeast Metschnikowia reukaufii Pitt
& Miller (Metschnikowiaceae) leads to the production of
distinctive VOCs that increase the attraction of A. mellif-
era to the flower (Rering et al. 2018). Fungi may, therefore,
change plant—pollinator interactions and ultimately increase
plant fitness by increasing pollination and improving seed
production (Yang et al. 2019). Moreover, the presence of
fungal microorganisms in pollen and nectar is essential for
the proper development, health, and survival of larvae and
adult bees (Dharampal et al. 2019; Parish et al. 2020). In
contrast, other microorganisms are known to threaten fitness.
The parasitic microsporidian Nosema apis, for example,
reduces the longevity of the colony and bee brood success
in A. mellifera (Webster et al. 2004).

Many perennial questions related to plants and fungi
in bee macro-ecology are constrained by technical diffi-
culties in identifying and differentiating organisms from
matrices such as pollen (Bell et al. 2022). The advent of
high-throughput sequencing has significantly enhanced the
detection and quantification of plant and fungal species by
DNA metabarcoding of nuclear ribosomal DNA Internal
Transcribed Spacer (ITS) region (Richardson et al. 2015;
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White et al. 1990), improving both the number of samples
that can be analyzed and the level of taxonomic resolution
achieved (Bell et al. 2022). DNA metabarcoding is a pow-
erful tool to assess the community structure of organisms
that can be measured using two approaches: alpha diversity
(i.e. within communities) and beta diversity (i.e. between
communities). This approach is particularly well suited to
uncovering temporal patterns in plant and fungal species
richness within bee-collected pollen, offering new insights
into the plant—bee—fungal interactions.

Previous research revealed that honeybee pollen baskets
collected at hive entrances showed changes in the plant com-
munity visited during foraging (Danner et al. 2017; Nogl
et al. 2023). Such variation likely reflects temporal changes
in floral diversity and composition and may drive shifts in
the flower-associated fungal community. Dynamic inter-
actions between plants and fungi could, in turn, influence
plant—pollinator interactions and the health and fitness of
pollinators through a multitrophic interaction. The combi-
nation of eusociality and the highly polylectic behavior of
honey bees is, therefore, a great opportunity to discover new
associations between fungal and plant communities during
the active foraging season. In this context, our study assessed
the plant and fungal species richness and composition by
DNA metabarcoding from corbiculate pollen loads of honey
bees returning to the hive in a non-native environment along
a temporal gradient.

Materials and methods
Pollen collection

In 2019, permission to sample pollen from honey bee hives
at 13 sites in the city of Toronto and the surrounding region
in Southern Ontario, Canada, was granted (Fig. 1). This
region is the economic center of Canada and is made up
of sprawling urban and peri-urban settlements surrounded
by agricultural croplands and a large protected natural area
gathered under the name, The Greenbelt (www.greenbelt.
ca). Each site consisted of 1-10 hives that were managed by
local beekeepers. One hive per site was selected for pollen
sampling and chosen based on the strength of the colony
activity at the end of winter to ensure pollen sampling was
not detrimental to colony survival or future generations of
honey bees. We assumed that the selected hives had similar
colony strength. Of the selected hives sampled from May to
September, a plastic pollen trap with a removable trellis was
permanently installed at the entrance (Figure S1). At each
selected site, pollen samples were collected between 2 and
5 times over the 5 months of sampling to reach a total of
44 samples (Table S1). Pollen sampling occurred on sunny,
non-windy days in the fourth week of each month, when
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Fig. 1 Apiary map. Distribution of the 13 pollen sample collection sites around the Greater Toronto Area, Canada

it was possible, by inserting the trellis for approximately
half a day. The trellis is designed to scrape the corbiculate
pollen basket from the hind legs of honey bees entering
the hive, causing the pollen to fall into a collection basin.
Pollen samples were collected and stored in glass jars at
— 20 °C. To prepare samples for DNA metabarcoding, each
defrosted sample was thoroughly mixed by lightly kneading
all corbiculate pollen per sample with a mortar and pestle. A
single sub-sample (average mass + standard deviation/sam-
ple=0.705 +0.180g, n=44) was taken from the total mass
of each collected sample.

DNA extraction, amplification, and sequencing

DNA was extracted from each pollen sample by adding
lysis solution from the Nippon Gene kit ISOPLANT (Nip-
pon Gene Co., LTD, Tokyo, Japan) and then grinding the
mixture at 1500 rpm for 2 min using a ‘Shake Master Neo’
(bms, Shinjuku, Tokyo, Japan). Once ground, the mixture
was left to stand at 65 °C for 10 min. The sample was then
centrifuged at 12,000 X g for 1 min and the supernatant was
removed. A purification solution and chloroform from the
Nippon Gene kit ISOPLANT were added to the DNA solu-
tion, which was shaken before being returned to the centri-
fuge at the same speed for 15 min. Once DNA was extracted

and cleaned, amplicon libraries were prepared using a two-
step tailed polymerase chain reaction (PCR) protocol used
by Noél et al. (2023) using primer pair 18S ITS1-ul/5.8S
ITS1-u2, amplifying the ITS1 region (Cheng et al. 2016).
The ITS1 region serves as a genetic marker for identifying
plants and fungi in complex samples, such as honeybee pol-
len (Blaalid et al. 2013; Wang et al. 2015). The first PCR
amplification was coupled with MiSeq-specific adapters and
[llumina index sequences. The second PCR amplification
was conducted using index primers. The generated library
was sequenced using MiSeq [llumina technology (Illumina,
San Diego, CA, USA) through a 2 x 300 paired-end run and
data compressed as a FASTQ file. Among the 44 samples of
the study, two were removed during this process (Table S1)
because the sequencing depth did not reach 1000 reads
(Sponsler et al. 2020).

Bioinformatics

The data were analyzed with QIIME2 (Bolyen et al. 2019)
by transforming raw sequence libraries into amplicon
sequence variants (ASVs). In detail, the raw sequence data
were imported using the Casava 1.8. (paired-end) demul-
tiplexed instructions, after which the DADA?2 plugin was
applied to trim, denoise, and merge paired-end reads of the
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demultiplexed sequences to improve the quality profiles
of the reads. Of the reads, the primers linked to the ITS1
region of each sequence were trimmed. Reads were also
truncated at 250 bp for forward and reverse reads based on
the information linked to the demultiplexed sequences. The
results obtained after processing by the DADA?2 process is a
community matrix indicating which ASV is present in each
sample and hit counts. For the same genetic marker, ASVs
were identified by querying two reference databases (i.e.
fungi and plants) with 97% confidence of similarity, usu-
ally considered as the species-level threshold (Stackebrandt
et al. 1994). This taxonomic classification uses machine-
learning-based classification methods with the classify-
sklearn function in QIIME2. Plant taxonomic classifica-
tion was performed using a customized reference database
called ‘Toronto.” The Toronto plant database was based on
a list of 1723 Angiosperm plants (filtered from 1937 vas-
cular plants) present in the city of Toronto (Cadotte, 2021).
This exhaustive list of species is most representative for the
taxonomic diversity present in this region based on avail-
able taxonomic and biogeographic information. We lumped
Lotus tenuis Waldst. & Kit. ex Willd. (Fabaceae) into Lotus
corniculatus L. (Fabaceae) as it belongs to a species com-
plex (Grant and Small 2011). Plant species recorded were
determined to be native or non-native using the field guide
in Del Tredici (2020) and Cadotte (2021). Of the non-native
species, we classified invasive species based on the species
list provided by the Early Detection & Distribution Map-
ping System (EDDMapS) Ontario https://www.eddmaps.
org/ontario/species/). For fungi, the reference dataset was
retrieved from the UNITE website on February 4th, 2021
(Abarenkov et al. 2020) using the RESCRIPt pipeline (Robe-
son et al. 2021). Each reference database was trained with
the naive-Bayes classifier implemented in QIIME2 and the
reference database that taxonomically assigned most ASVs
was selected. The taxonomic results were then filtered to
remove non-target mitochondrial and chloroplast sequences
(Jimenez and Jimenez 2021). The generated community
matrix was further filtered to remove ASVs with a frequency
of less than 10 hits within and across samples.

Community and statistical analysis

All data wrangling and statistical analyses were performed
using RStudio software (R version 4.0.1; R Core Team
2020). The number of hits per ASV was considered as quan-
titative data of the plant and fungal community matrices
(Deagle et al. 2019).

We calculated both the alpha and beta diversity met-
rics using the phyloseq and microbiome packages (Lahti
et al., n.d.; McMurdie and Holmes 2013). Alpha diver-
sity is based on the observed/estimated species richness
and indexes within modality, here the sample site. Beta
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diversity is the differentiation of species composition
between independent samples. For alpha diversity met-
rics, we considered the richness (i.e. the number of distinct
ASVs observed) and the Shannon’s diversity index per
sample. The Shannon’s diversity index measures biodiver-
sity (using species richness and relative abundance) as the
logged probability that two randomly selected individuals
from the same sampling unit belong to different species
(Shannon 1948).

Fungal alpha diversity metrics (i.e. ASV richness and
Shannon’s index) were first modeled as a function of plant
alpha diversity metrics. Given the unbalanced experimen-
tal design, mixed modeling was used to explain fungal
alpha indexes based on associated plant alpha diversity
indexes. The fungal ASV richness and Shannon’s index
were modeled using generalized linear mixed model
(GLMM) fitted with Poisson error distribution and lin-
ear mixed model (LMM) fitted with Gaussian error dis-
tribution, respectively. Second, all alpha diversity met-
rics considered in this study were tested using month as
a numeric fixed effect and using GLMMs with negative
binomial error structure for species richness and LMMs
for Shannon’s index. In all models, the sampled hive was
specified as a random effect. All mixed models were fit-
ted using the package Ime4 (Bates et al. 2015) and glm-
mTMB (Brooks et al. 2017). For all mixed-effects models,
assumptions about the residual distributions (i.e. over- and
under-dispersion, deviance, heteroscedasticity, uniformity)
were checked with the DHARMa package (Hartig 2021).

To measure the dissimilarity between sampled hives
(including identified taxa as variables), i.e. beta diversity
analysis, the Bray—Curtis dissimilarity index was used
after a Hellinger’s transformation of the quantitative data.
The distance matrix obtained from this index was consid-
ered as the response variable in a distance-based redun-
dancy analysis (d(bRDA) using the dbrda function from the
vegan package (Oksanen et al. 2012). Sampling month was
used as a numeric variable. When significant, a permuta-
tion test for dbRDA model was applied using the anova.
cca function. Pairwise comparisons between months with
Holm’s correction for multiple testing were performed
using pairwise.perm.manova function from RVAide-
Memoire package (Hervé, 2020). To visualize variation
in species composition as a function of temporal factor,
alternative plotting function (i.e. ordiplot), with a scaling
(scaling =2) to show relationships between explanatory
variables and species, was used to show the constrained
ordination for plants and fungi community compositions.
All the graphical representations were generated using the
ggplot2 package (Wickham 2009).
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Results

The raw data of pollen load DNA consisted of 2,457,263
reads. After trimming and filtering, the data consisted of

Table 1 Plant number and proportion according to native status, stra-
tum status, and plant lifecycle among all samples

Number of plant spe-  Proportion of

cies plant species
(%)

Native status

Non-native 48 61.54

Invasive 11 14.10

Native 18 23.08
Stratum status

Herbaceous 66 84.62

Woody 11 14.10
Plant lifecycle

Perennial 49 62.82

Biennial 10 12.82

Annual 18 23.08

1,664,808 reads and 1111 ASVs of plants and fungi dis-
tributed across 42 pollen samples. A total of 77 plant and
46 fungi taxa were identified from the sampled hives that
represent 50.68% of ASVs identified to the species level. At
the family and genus level, the ASVs assignation process
reached 88.48% and 85.42%, respectively.

Plant species composition

Among the 77 plant species (Table S2), honey bee workers
mainly collected pollen from species that are non-native,
herbaceous, and perennial (Table 1). Three non-native spe-
cies were observed in most samples: white clover Trifolium
repens (71.4%), field sow-thistle Sonchus arvensis (35.7%),
and red clover Trifolium pratense (28.6%) (Table S2). Tri-
folium repens was the most foraged taxon throughout the
sampling period from June to September, while other plant
taxa were only foraged once or twice (Fig. 2A). Trifolium
repens was also foraged quasi-evenly across sampling sites
(Fig. 2B). The three most represented plant families in terms
of number of distinct species were as follows: Asteraceae
(31 species), Fabaceae (8 species), and Brassicaceae (7
species). Other uncommon, non-native plant species identi-
fied included prickly lettuce Lactuca serriola (2.4%) and
chicory Cichorium intybus (7.1%), as well as invasive spe-
cies, including European buckthorn Rhamnus cathartica
(2.4%) and garlic mustard Alliaria petiolata (2.4%). We
further identified the highly allergenic species giant rag-
weed, Ambrosia trifida (2.4%). Several non-native cultivated

species were also identified in a few samples, such as melon
Cucumis melo L. (2.4%), cacumber Cucumis sativus (2.4%),
and garlic chives Allium tuberosum (2.4%).

Fungal species composition

Among the 46 fungi taxa (Table S3), the three most com-
monly observed taxa were as follows: Starmerella bom-
bicola (73.8%), Mucor circinelloides (66.7%), and Mucor
falcatus (57.1%). The three most represented fungi families,
in terms of number of distinct taxa were as follows: Sac-
charomycetaceae (6 species), Saccharomycetales — Incertae
sedis (5 species), and Mucoraceae (5 species). Starmerella
bombicola and M. circinelloides occurred throughout
the entire sampling period (Fig. 2C). Mucor falcatus and
Starmerella jinningensis occurred only in early summer
(Fig. 2C). Starmerella bombicola, M. circinelloides, and M.
falcatus were present in almost all sampling sites (Fig. 2D).

Plant and fungal community structure

Our results indicated that greater alpha diversity of plants
is associated with higher alpha diversity of fungi, as
shown by an increase in species richness (z-value =4.30;
p-value <0.001; Fig. 3A) and Shannon's diversity index
(t-value =2.26; p-value =0.026; Fig. 3B). Sampling month
had a significant positive influence on plant species richness
(z-value =3.42; p-value <0.001; Fig. 4A), plant Shannon’s
index (#-value =4.21; p-value < 0.001; Fig. 4C), fungal spe-
cies richness (z-value =3.43; p-value < 0.001; Fig. 4B), and
fungal Shannon’s index (t-value=2.11; p-value =0.035;
Fig. 4D). This means that the progress of the season sig-
nificantly increased all considered alpha diversity metrics.

For beta diversity analysis, plant and fungal permutation
tests from dbRDA models revealed a significant temporal
shift in the composition of foraged plant (df=4; F=3.37;
p-value <0.001) and fungal species (df=4; F=1.47,
p-value =0.046) over the course of the foraging season. In
the plant dbRDA model, the month factor accounted for
26.69% of the total variance, whereas, in the fungal dbRDA
model, it explained 13.69% of the total variance. Subsequent
post hoc analyses revealed that the plant community in May
was distinct from those in other months, and a significant
shift in plant composition was also observed between the
plant communities in July and August (Holm’s adjusted
p-value <0.05; Fig. 5A). The second PERMANOVA further
failed to detect a significant influence of temporal progres-
sion on fungal composition (Holm’s adjusted p-value > 0.05;
Fig. 5B).
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Fig.3 Foraged plant richness A
and plant Shannon’s index effect
on fungi richness (A) and fungi
Shannon’s index (B), respec-
tively (n=42). Shaded areas

for both graphics correspond

to the 95% confidence interval
superimposed on black lines.
The black dots of both graphics
correspond to pollen samples
(n=42)

Fungi species richness

Fungi Shannon's index
5

o
o

0.0 .

Discussion

Our study investigated the community structure of plants
and fungi based on corbiculate pollen obtained from for-
aging honey bees returning to their hives located across
the city of Toronto and the surrounding region in South-
ern Ontario. After describing our dataset, we assessed the
interactions between plants and fungi in relation to alpha
and beta diversity metrics. Our results revealed biodiversity
patterns structuring communities resulting from the foraged
pollen. We found that honey bees preferred to forage on 59
ornamental non-native plant species (75% of all identified
plants; Table S2) of which 11 are considered invasive spe-
cies. Some plant species visited by honey bees pose a risk to
biodiversity, livestock, and humans. This is the case for the

1 2
Plant Shannon's index

invasive European buckthorn, Rhamnus cathartica L., a spe-
cies subject to import and monitoring regulations imposed
by the Canadian government. Another invasive species, gar-
lic mustard, Alliaria petiolata (M. Bieb.), is aggressively
spreading in forests in Ontario (Welk et al. 2002). Giant
ragweed, Ambrosia trifida L., is highly allergenic during
the flowering period (due to pollen) both at respiratory and
at epidermal levels (plaques, itching) (Rasmussen et al.
2017). Some widespread species such as the non-native
viper’s bugloss and the native white snakeroot can cause
intoxication in livestock (Davis et al. 2015). These findings
highlight how DNA metabarcoding of bee-collected pollen
can reveal the widespread presence of ecologically and eco-
nomically invasive plant species across urban and peri-urban
landscapes, underscoring the role of honey bees as effective
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Fig.4 Temporal effect on foraged plant richness (A), fungi rich-
ness (B), plant Shannon’s index (C), and fungi Shannon’s index (D)
(n=42). Shaded areas for both graphics correspond to the 95% con-

“bio-sampler” of environmental plant diversity (Sponsler
et al. 2020).

The mycobiota identified from the surveyed corbiculate
pollen revealed similarities in species and genera observed
in other studies, such as Starmerella spp. and Mucor spp.
(De Jesus Inacio et al. 2021). We further identified a previ-
ously unreported fungal genus that could use pollen to be
vectored by honey bees, such as Lachancea spp. (Kogan
et al. 2023). Starmerella spp. were the most common yeast
taxa in our survey interacting with foraged pollen. The most
prevalent taxon was a yeast, S. bombicola, isolated first from
Canadian bumble bee honey (Spencer et al. 1970). This fruc-
tophilous yeast is well studied for the production of second-
ary metabolites and to a lesser extent for interactions with
flowers and pollinators. A recent study demonstrated that
S. bombicola improved food intake by the honey bee larvae
when mixed with a standard pollen diet (Canché-Colli et al.
2021). All Mucor spp. in this study have been documented
to be able to infect humans depending on the biological
context (Table S3) but also exist as molds in floral pollen,
corbiculate pollen, or bee bread. For example, the second
most prevalent fungal species in this study, M. circinelloides
that was discovered in 31 (out of 42) samples (Table S3), is
known to cause disease and infection in humans, including
mucormycosis and gastrointestinal disorders (Wagner et al.
2019). For the honey bee, other Mucor spp. are beneficial: In
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fidence interval superimposed on black lines. The black dots of all
graphics correspond to pollen samples

bee bread, the presence of Mucor spp. inhibits the growth of
chalkbrood disease, Ascosphaera apis (Maasen ex Claussen)
L.S. Olive & Spiltoir, by producing antimycotic compounds
(Gilliam et al. 1988).

We showed that fungal richness and Shannon’s index
evenness were positively influenced by floral richness and
evenness in pollen loads by intrinsic relationships between
both groups (Klaps et al. 2020). Furthermore, while the plant
communities visited by honey bees changed over the forag-
ing season with variation in the range of visited flowers, the
fungal community seems homogenous. This means that the
fungal communities are more similarly distributed across
the foraging season, perhaps due to a gap in the taxonomic
knowledge on pollen/nectar fungi (Zhou and May 2023), but
also because we showed high dominance patterns in foraged
plants, e.g. Trifolium repens or Trifolium pratense.

The positive temporal trend in plant species richness may
be the result of a decrease in food resources by mid-sum-
mer, forcing honey bees to forage on a greater number of
plant individuals and species (Noél et al. 2023). This trend
declines between mid- and late summer, as well as the begin-
ning of fall following the end of the flowering season for
many native and relatively common species. The months
with the highest plant species richness were July and August,
which could be explained by the higher number of samples
obtained from the hives during these months. Concerning
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Fig.5 Distance-based redun- A
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the foraged plant composition, it is firmly established in the
literature that the composition of pollen collected by honey
bees undergoes multiple shifts throughout the seasons (Dan-
ner et al. 2017; Noél et al. 2023; Sponsler et al. 2020), which
could influence fungal community structure within the cor-
biculate pollen samples.

Fungal richness and evenness also increased throughout
the survey period, reinforcing the concomitant pattern with
plants: More flower species were visited by honey bees and
more fungi taxa were sampled. This pattern aligns with the
classical ecological principle proposed by Preston (1948),
where an increase in sampling efforts leads to a rise in the

00 25
dbRDA1 (5.13%)

number of observed species and an expansion of sample
diversity. More work is now needed to link plant—fungal
diversity, as well as that of other microbes, in bee corbicu-
late pollen.

Flowers are ephemeral organs of the plant, implying that
the mycobiota do not develop on specific substrates dur-
ing the growing season. Fungi may thus rely and depend on
animal vector phenology, including hibernating taxa such
as bumblebee queens, overwintering honey bee colonies,
or solitary bees emerging from natal nests (e.g. Rothman
et al. 2019) that could act as reservoirs for flower-inhabiting
microbes (Pozo et al. 2018). Traits of pollinators, such as

@ Springer



44 Page100f 12

A. Decolle et al.

sociality or diet breath, as well as plant traits, such as floral
morphology or nectar composition, could further have piv-
otal roles in shaping mycobiota community structure. Honey
bees may forage over large spatial scales to collect resources
for the hive. We homogenized corbiculate pollen samples
from a pollen trap at the hive entrance, meaning that we may
have also homogenized the fungal communities, thereby
dampening the contribution of single honey bee foragers.
There may thus be more complex community patterns that
can only become evident from corbiculate pollen of single
foraged plant species or landscape effects. Evaluating pollen
samples of single bees could thus help to identify positive
and negative interactions that are important for bee health
and management and elucidate more complex interactions
between managed honey bees and wild bees (Russo et al.
2021).

Based on personal observations, we know that many
non-native plants are visited by native wild bees. In our
study, we found only few examples of honey bees visit-
ing native perennial herbaceous plants for pollen; how-
ever, although we did identify a few, including boneset,
Eupatorium perfoliatum L., and cup plant, Silphium per-
foliatum L. (Table S2), that are promoted by the City of
Toronto for restoration to support wild and native bees
(Toronto 2022). Future research can aim to identify for-
aged plant species visited disproportionally more (or
exclusively) by native and wild bees compared to non-
native managed honey bees (Hung et al. 2018). Such an
effort could help focus research questions on competi-
tion between honey bees and wild bees for native floral
resources, and enhance conservation efforts (i.e. which
species to include in plant mixes; Miiller et al. 2024).
New knowledge can thus be acquired by repeating the
work done here with individual honey bees or wild bee
species with more limited foraging ranges and more
divergence in fungal communities.

Conclusion

In this study, honey bees tended to forage mainly on non-
native plants that are widespread across the city of Toronto
and its surroundings. Although two of the most visited
non-native plant species, white and red clover (Trifolium
repens and T. pratens) are generally perceived as positive
in urban and agricultural landscapes, it is important to
note that some overabundant non-native species are pol-
linated by non-native honey bees that can proliferate and
become invasive. With a growth in urban beekeeping as
a hobby, the potential to augment pollination functions to
current and future invasive plant species warrants atten-
tion. Fungal diversity was further concordant with plant
diversity in pollen loads sampled at honey bee hives.

@ Springer

Future studies can aim to understand and disentangle
complex bee—flower—fungal interactions to elucidate the
outcomes that are positive (e.g. nutritional benefits to bees,
vectorization of fungi) or negative (e.g. proliferation of
phytopathogenic or allergy-inducing taxa).
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