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The importance of fat accumulation and reserves for 
insect overwintering
Thomas Enriquez and Bertanne Visser 

Winter is a challenging season for ectothermic species such as 
insects. In addition to thermal stress imposed by cold 
temperatures, food scarcity during winter can lead to starvation 
and energy drain. In preparation for winter, most insects 
accumulate lipid (fat) reserves, which are the principal source of 
energetic fuel during overwintering. In this review, we highlight 
the most recent literature on lipid metabolism in response to 
cold. We first discuss how lipid metabolism is affected by biotic 
and abiotic environmental changes in preparation for winter. We 
then highlight how lipid dynamics are affected during winter, 
including physiological and (epi)genetic mechanisms. We end 
our review emphasizing the importance of remaining fat 
reserves in spring and how climate change can negatively 
impact lipid metabolism and fitness.
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Introduction
As ectotherms, insect body temperature fluctuates with 
the temperature of the surrounding environment. 
During winters in temperate, continental, or polar re
gions, temperatures can decrease below the range that 
insects can tolerate, leading to cold injuries that can 
compromise biological functions [1,2]. Acclimation and 
adaptations to cold exposure can mitigate potential in
juries (e.g. cryoprotectant accumulation, homeoviscous 
adaptation to maintain proper cell membrane fluidity) 
[2,3], including dormancy [4,5]. Dormancy responses 
vary in intensity, obligatory status, and developmental 
stage and are characterized by a decreased metabolic 

activity [4,5]. Diapause, a programmed developmental 
arrest entered in anticipation of harsh environmental 
conditions, is common in insects [4]. Diapause is usually 
associated with physiological changes promoting cold 
tolerance [2,5,6] and increased lipid reserves through 
synthesis and accumulation [4,7]. Starvation poses an 
additional physiological challenge provoked by cold 
winter temperatures because food is generally scarce; 
hence, sufficient fat reserves are needed for winter sur
vival. Cold exposures, and particularly winter conditions, 
thus represent a critical period for insects with strong 
selective pressures on energy metabolism.

Adequate responses to winter conditions require sub
stantial energetic investment [8,9]. In insects, most 
energetic reserves are available in the fat body in the 
form of a lipid (fat) depot. Fat reserves also serve as 
energetic fuel during periods of food scarcity, and are, 
therefore, critical for winter survival in many insects. 
Here, we use lipid and fat interchangeably as syno
nyms for triacylglycerols. We make a distinction be
tween fatty acid synthesis, with fatty acids being 
precursors for lipid synthesis, and the buildup of fat 
stores through accumulation of triacylglycerols (as 
defined in Ref. [10]). Lipid metabolism has already 
received attention from the thermal biology commu
nity [3,4,7,9]. In this review, we build upon this 
knowledge highlighting the most recent findings (<  5 
years) in the field, focusing on the role of fat reserves 
for overwintering. Our review is divided into three 
parts: Preparation for winter, including fat synthesis 
and accumulation in response to abiotic and biotic 
cues; Overwintering, including lipid dynamics 
and underlying physiological and genetic mechanisms; 
Resumption of activity in spring, including the con
sequences of remaining fat reserves for fitness.

Accumulation of fat reserves to prepare for 
winter
Considering the key role fat reserves play for survival 
during winter, as well as reproduction at the onset of 
spring (see below), fat content of many insects is ex
pected to increase in anticipation of winter (Table 1). 
Diapause induction, local adaptation, variation in sea
sonal conditions (for nondiapausing or field-collected 
insects), acclimation, and developmental temperature 
were indeed previously found to lead to substantial fat 
accumulation (Table 1 and Figure 1).
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Several genes and enzymes are involved in lipid synth
esis and accumulation before overwintering (Table 2). In 
the ladybird beetle Coccinella septempunctata, for ex
ample, expression of four genes involved in fatty acid 
metabolism was found to be the highest during the 
diapause preparation phase, while lowering near the end 
of diapause. These genes are involved in fatty acid 
synthesis, oxidation, and elongation and by knocking 
down their expression (using RNA interference) fat ac
cumulation before diapause decreased [37]. A substantial 
increase in fatty acid synthesis can further be indicative 
of triacylglycerol synthesis and accumulation, as in C. 
septempunctata [12,37]. This may, however, not always be 
the case [10], for example, when fatty acids are synthe
sized in insufficient quantities for use in triacylglycerol 
synthesis. In the aphid Acyrthosiphon pisum, differences 
in fat accumulation were not associated with acetyl-CoA 
carboxylase activity (initiating the first committed step 
of fatty acid synthesis) nor with fatty acid synthase ac
tivity [35]. The increase in lipid reserves in diapausing 
aphids could rather result from energetic sparing due to 
arrest of reproductive functions [35] (Figure 1).

In addition to temperature, many insects use photo
period to anticipate stressful conditions. In the cabbage 
beetle Colaphellus bowringi, for example, proteomics re
vealed that diapause induction in response to photo
period led to an increase in enzymes associated with 
lipid metabolism. Fatty acid-binding protein levels, in
volved in lipid trafficking and signaling, were higher in 
diapause-destined females. Knockdown of the asso
ciated gene indeed reduced lipid accumulation, and, 
interestingly, decreased expression of two heat-shock 
proteins [38]. This could suggest a link between lipid 
metabolism and more general responses to thermal 
stress. Overall, the genes and enzymes listed in Table 2
belong to a variety of metabolic pathways highlighting 
that insects can have different metabolic strategies to 
achieve the same goal: fat synthesis and accumulation to 
prepare for overwintering.

Factors other than temperature or photoperiod can affect 
fat accumulation. In female Culex pipiens mosquitoes, 
endosymbiotic interactions were found to be essential 
for fat accumulation during diapause preparation. When 
microbiota diversity and quantity were lowered (almost 
absent), fat accumulation and the buildup of reserves 
were impeded, even though the expression of fatty acid 
synthesis genes was not [43] (Figure 1). Another ex
ample is the Antarctic midge, Belgica antarctica, where 
changes in fat content depend on microhabitat condi
tions. These changes are not driven, however, by mi
croclimatic conditions in terms of temperature. Instead, 
food abundance, which can vary greatly between mi
crohabitats, is the main driver of fat metabolism, where 
midges from food-rich habitats generally have a higher 
fat content [28]. These two examples emphasize that T
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complex biotic interactions can impact insect lipid ac
cumulation in preparation for winter.

Among insects, parasitoids that feed on other arthropods 
during development have a unique lipid metabolism in 
terms of fat accumulation because most species do not 
accumulate fat as adults [10]. If no fat can be accumu
lated to anticipate harsh winter conditions, how do adult 
parasitoids manage to survive until spring? As over
wintering is costly in terms of fat reserves (see below), 
only the fattest parasitoids are expected to survive. In 
anticipation of winter, parasitoids could thus carry over 
larger amounts of fat from their host, for example, by 
exploiting larger hosts or through more efficient lipid 
scavenging. In aphid parasitoids, several studies indeed 
revealed that more fat is carried over from the host in 
response to colder temperatures, such as in Aphidius ervi 

[34] and Aphidius platensis [36]. Although the latter spe
cies did not seem to go into diapause, individuals origi
nating from locations with the coldest winter conditions 
were the largest and contained most fat. This suggests 
potential local adaptation and plasticity in response to 
winter climatic conditions [36].

Fat synthesis and accumulation of the amber wasp 
Leptopilina heterotoma depend, as in most insects, on the 
environmental temperature. Females accumulate more 
fat as an adult when reared at a lower developmental 
temperature (20 compared with 23°C) [44]. What dis
tinguishes L. heterotoma from other insects and most 
parasitoids is that this species shows extreme plasticity 
in fat synthesis and accumulation [10,45]. When devel
opment occurs on a fat host (i.e. a Drosophila larva), 
adults emerge with high fat reserves and generally do 

Figure 1  

Current Opinion in Insect Science

Graphical representation of recent research (< 5 years) on fat metabolism in relation to cold temperatures and diapause. (a) Fat metabolism can be 
directly impacted by cold temperatures, but also by dormancy, which is initiated in response to changes in photoperiod, temperature, or both (see 
Table 1 for an overview of recent studies). (b) Fat reserves are accumulated in preparation for winter and serve as energetic fuel during prolonged cold 
exposures for the maintenance of biological functions. Red arrows indicate how biotic and abiotic factors affect lipid metabolism before and during 
overwintering. Blue lines show phenotypic responses of the insect that reduce lipid consumption during overwintering. Green arrows show how fat 
reserves affect other phenotypic traits of the insect. Genes and enzymes involved in lipid synthesis and accumulation in response to cold are 
presented in Table 2.  

4 Molecular physiology 

www.sciencedirect.com Current Opinion in Insect Science 2023, 60:101118



T
ab

le
 2

 

S
tu

d
ie

s 
fo

cu
si

ng
 o

n 
g

en
es

 a
nd

 e
nz

ym
es

 in
vo

lv
ed

 in
 t

he
 li

p
id

 m
et

ab
o

lic
 r

es
p

o
ns

e 
to

 d
ia

p
au

se
 o

r 
ch

an
g

es
 in

 t
em

p
er

at
ur

e.
 

A
d

ap
ta

tio
n

G
en

e/
en

zy
m

e
S

p
ec

ie
s

S
ta

ge
C

ha
ng

es
 in

 f
at

 
re

se
rv

es
M

et
ab

ol
ic

 r
ol

e
R

ef
er

en
ce

D
ia

p
au

se
 

in
d

uc
tio

n
Li

p
as

es
 (

en
zy

m
es

)
H

yp
ha

nt
ria

 c
un

ea
 

(L
ep

id
op

te
ra

: 
A

rc
tii

d
ae

)
P

up
ae

In
cr

ea
se

In
cr

ea
se

d
 f

at
 c

on
te

nt
 in

 d
ia

p
au

se
-d

es
tin

ed
 la

rv
ae

 
is

 a
ss

oc
ia

te
d

 w
ith

 in
cr

ea
se

d
 li

p
as

e 
ac

tiv
ity

 
(in

vo
lv

ed
 in

 a
cy

lg
ly

ce
ro

l c
at

ab
ol

is
m

).

[1
1]

D
ia

p
au

se
 

in
d

uc
tio

n
C

at
he

p
si

n 
L 

(g
en

e)
C

oc
ci

ne
lla

 s
ep

te
m

p
un

ct
at

a 
(C

ol
eo

p
te

ra
: 

C
oc

ci
ne

lli
d

ae
)

A
d

ul
t

In
cr

ea
se

C
at

he
sp

in
 L

 e
xp

re
ss

io
n 

in
cr

ea
se

s 
d

ur
in

g 
d

ia
p

au
se

 
p

re
p

ar
at

io
n.

 In
vo

lv
ed

 in
 li

p
id

 a
cc

um
ul

at
io

n 
th

ro
ug

h 
re

gu
la

tio
n 

of
 f

at
ty

 a
ci

d
 s

yn
th

as
e 

2.

[1
2]

D
ia

p
au

se
 

in
d

uc
tio

n
A

ce
ty

l-
C

oA
 c

ar
b

ox
yl

as
e 

(A
cc

); 
lo

ng
-c

ha
in

 f
at

ty
 a

ci
d

–C
oA

 li
ga

se
 (

A
cs

l);
 

el
on

ga
se

 o
f 

ve
ry

-l
on

g-
ch

ai
n 

fa
tt

y 
ac

id
s 

(E
lo

); 
ve

ry
-l

on
g-

ch
ai

n 
3-

ox
oa

cy
l-

C
oA

 r
ed

uc
ta

se
 (

K
ar

) 
(g

en
es

)

C
oc

ci
ne

lla
 s

ep
te

m
p

un
ct

at
a 

(C
ol

eo
p

te
ra

: 
C

oc
ci

ne
lli

d
ae

)
A

d
ul

t
In

cr
ea

se
K

no
ck

d
ow

n 
d

ec
re

as
es

 f
at

 a
cc

um
ul

at
io

n.
[3

7]

D
ia

p
au

se
 

in
d

uc
tio

n
Fa

tt
y 

ac
id

-b
in

d
in

g 
p

ro
te

in
 (

FA
B

P
) 

(e
nz

ym
e)

C
ol

ap
he

llu
s 

b
ow

rin
gi

 
(C

ol
eo

p
te

ra
: 

C
hr

ys
om

el
id

ae
)

A
d

ul
t

In
cr

ea
se

K
no

ck
d

ow
n 

d
ec

re
as

es
 f

at
 a

cc
um

ul
at

io
n.

[3
8]

D
ia

p
au

se
 

m
ai

nt
en

an
ce

D
es

at
ur

as
e1

 (
D

es
at

1)
; 

lip
id

 s
to

ra
ge

 d
ro

p
le

t 
p

ro
te

in
s 

1 
an

d
 2

 (
Ls

d
1,

 L
sd

2)
; 

fa
tt

y 
ac

yl
-C

oA
 

re
d

uc
ta

se
 1

 (
Fa

r1
); 

fa
tt

y 
ac

id
 h

yd
ro

xy
la

se
 

d
om

ai
n-

co
nt

ai
ni

ng
 p

ro
te

in
 2

; 3
-h

yd
ro

xy
ac

yl
-C

oA
 

d
eh

yd
ro

ge
na

se
 t

yp
e-

2;
 a

cy
l-

co
a-

b
in

d
in

g 
p

ro
te

in
; 

fa
tt

y 
ac

id
 s

yn
th

as
e 

(F
as

); 
ac

et
yl

-C
oA

 c
ar

b
ox

yl
as

e 
(A

cc
); 

st
er

ol
 O

-a
cy

ltr
an

sf
er

as
e 

1;
 s

te
ar

oy
l-

C
oa

 
d

es
at

ur
as

e 
5;

 f
at

ty
 a

ci
d

 s
yn

th
as

e-
lik

e;
 f

at
ty

 a
cy

l-
 

C
oa

 re
d

uc
ta

se
; v

er
y-

lo
ng

-c
ha

in
 fa

tt
y 

ac
id

 —
 C

oA
 

lig
as

e 
b

ub
b

le
gu

m
 (

b
gm

); 
ac

et
yl

-C
oA

 
ca

rb
ox

yl
as

e 
X

1 
an

d
 2

 (
A

cc
 X

1;
 A

cc
 X

2)
; 

ac
et

yl
- 

C
oA

 a
ce

ty
ltr

an
sf

er
as

e 
(A

ca
t) 

(g
en

es
)

Tr
ic

ho
gr

am
m

a 
d

en
d

ro
lim

i
P

re
p

up
ae

In
cr

ea
se

R
N

A
se

q
 r

ev
ea

le
d

 1
7 

ge
ne

s 
in

vo
lv

ed
 in

 li
p

id
 

m
et

ab
ol

is
m

 w
er

e 
up

re
gu

la
te

d
 in

 r
es

p
on

se
 t

o 
d

ia
p

au
se

.

[3
9]

D
ia

p
au

se
 

m
ai

nt
en

an
ce

P
ar

 d
om

ai
n 

p
ro

te
in

 1
 (

P
d

p
1)

 (
ge

ne
)

C
ul

ex
 p

ip
ie

ns
 (

D
ip

te
ra

: 
C

ul
ic

id
ae

)
A

d
ul

t
In

cr
ea

se
R

eg
ul

at
es

 c
irc

ad
ia

n 
cl

oc
k 

ge
ne

s 
to

 a
nd

 n
oc

 a
nd

 is
 

in
vo

lv
ed

 in
 f

at
 a

cc
um

ul
at

io
n.

[1
6]

D
ia

p
au

se
 

m
ai

nt
en

an
ce

Li
p

id
 s

to
ra

ge
 d

ro
p

le
t 

p
ro

te
in

 2
 (

Ls
d

2)
 

(g
en

e)
Le

p
tin

ot
ar

sa
 d

ec
em

lin
ea

ta
 

(C
ol

eo
p

te
ra

: 
C

hr
ys

om
el

id
ae

)

A
d

ul
t

In
cr

ea
se

In
vo

lv
ed

 in
 li

p
id

 d
ro

p
le

t 
as

se
m

b
la

ge
.

[4
0]

D
ia

p
au

se
 

m
ai

nt
en

an
ce

A
ce

ty
l-

C
oA

 c
ar

b
ox

yl
as

e 
(A

cc
); 

lip
id

 s
to

ra
ge

 
d

ro
p

le
t 

p
ro

te
in

s 
1 

an
d

 2
 (

Ls
d

1;
 L

sd
2)

 
(g

en
es

)

C
hr

ys
op

er
la

 n
ip

p
on

en
si

s 
(N

eu
ro

p
te

ra
: 

C
hr

ys
op

id
ae

)
A

d
ul

t
In

cr
ea

se
D

ia
p

au
se

 is
 a

ss
oc

ia
te

d
 w

ith
 d

iff
er

en
tia

l e
xp

re
ss

io
n 

of
 m

or
e 

th
an

 2
00

0 
ge

ne
s 

(R
N

A
se

q
).

[4
1]

D
ia

p
au

se
 

m
ai

nt
en

an
ce

G
ly

co
ge

n 
sy

nt
ha

se
 (

G
ly

S
) 

(e
nz

ym
e)

C
ul

ex
 p

ip
ie

ns
 (

D
ip

te
ra

: 
C

ul
ic

id
ae

)
A

d
ul

t
In

cr
ea

se
C

at
al

yz
es

 g
ly

co
ge

n 
fo

rm
at

io
n.

 K
no

ck
d

ow
n 

re
su

lts
 

in
 d

ec
re

as
ed

 f
at

 a
cc

um
ul

at
io

n 
in

 d
ia

p
au

si
ng

 
fe

m
al

es
.

[4
2]

A
cc

lim
at

io
n

A
ce

ty
l-

C
oA

 c
ar

b
ox

yl
as

e 
(A

C
C

) 
(e

nz
ym

e)
A

cy
rt

ho
si

p
ho

n 
p

is
um

 
(H

em
ip

te
ra

: 
A

p
hi

d
id

ae
)

A
d

ul
t

D
ec

re
as

e
N

o 
lin

k 
w

as
 f

ou
nd

 w
ith

 f
at

 a
cc

um
ul

at
io

n.
[3

5]

Fa
tt

y 
ac

id
 s

yn
th

as
e 

(F
A

S
) 

(e
nz

ym
e)

N
o 

ch
an

ge

Lipids in insect cold tolerance and overwintering Enriquez and Visser 5

www.sciencedirect.com Current Opinion in Insect Science 2023, 60:101118



not synthesize and accumulate fat at all. When devel
opment occurs on a lean host, adult parasitoids emerge 
with low fat reserves and synthesize and accumulate 
substantial lipids de novo [45]. Female L. heterotoma 
overwinter as quiescent adults [46]; hence, we expect 
females to synthesize and accumulate sufficient fat re
serves during autumn to prepare for winter (Figure 2). 
Plasticity is thus expected to decrease, mostly irrespec
tive of host lipid quality (poor or rich), as females should 
synthesize and accumulate fat to be able to survive 
during winter, but this remains to be empirically tested.

Metabolism of fat reserves during winter
Once fat has been accumulated, reserves are then gra
dually consumed during winter even if cold exposures 
are typically characterized by a decreased metabolic rate 
[9,25,22] (Table 1; Figures 1 and 3). In diapausing spe
cies, fat reserves are slowly consumed during diapause 
maintenance when metabolic activity is the lowest 
(Figure 3). During the termination phase, metabolic 
activity increases using lipid stores as fuel [4]. The flesh 
fly Sarcophaga crassipalpis needs to overcome a long 
diapause period in the pupal stage that is characterized 
by alternating periods of metabolic suppression and high 
metabolic activity. Chen et al. [47] showed that such 
metabolic bursts are regulated by reactive oxygen spe
cies (ROS) levels: decreased ROS levels trigger meta
bolic bursts. Periods of high metabolic activity are 
characterized by aerobic metabolism of lipids, indicated 
by an increase in L-acetylcarnitine with carnitine being 
involved in lipid mobilization (but see Ref. [15] where 
diapausing mosquito eggs have reduced carnitine levels). 
Another line of evidence for aerobic lipid metabolism is 
that the fatty acid palmitate is oxidized via acetyl-COA 
during metabolic bursts [47]. ROS likely acts on 

adenosine-5′-monophosphate-activated protein kinase, a 
master regulator of lipid metabolism. In some insects, 
however, fat levels barely change during winter 
(Table 1), suggesting that only few lipids are used as 
metabolic fuel. A drastic lowering of metabolic rate in 
response to low temperature generally observed in in
sects [9,25,22] could explain why fat usage is lower 
during winter in these species (Figure 1).

Epigenetic factors, such as microRNAs (miRNAs), were 
also found to play a role in lipid metabolism during 
diapause. miRNAs are major post-transcriptional reg
ulators of gene expression. Batz et al. [49] identified 
seven miRNAs that were differentially regulated in 
diapausing pharate larvae of the mosquito A. albopictus. 
Particularly, miR-14-5p was downregulated that typically 
regulates the accumulation of lipids in insects. In an
other study, Meuti and colleagues [50] showed that in 
diapausing female C. pipiens, 3 miRNAs (miR-305-5p; 
miR-277-3p; miR-14-3p) linked with fat accumulation 
were downregulated. As miRNAs are decreasing gene 
expression, their downregulation during diapause could 
be linked with an increased activity of lipid metabolic 
genes. We are only beginning to understand the role of 
epigenetic factors in regulating lipid metabolism, re
presenting an important avenue for future research.

Many recent studies monitoring the gradual consump
tion of fat reserves during winter have focused on dia
pause (Table 1). Numerous insect species do not, 
however, rely on a true diapause response, but undergo 
overwintering in a quiescent state, for example, several 
Drosophila flies [48] or parasitoids such as L. heterotoma 
(see above, Figure 2; [46]). Quiescent insects facing cold 
exposures also rely on fat reserves. In nondiapausing 
larvae of the lepidopteran Spodoptera litura, for example, 
a shift to a colder temperature (from 27 to 13°C) leads to 
a concomitant shift in macronutrient usage from carbo
hydrates to lipids. This decrease in temperature also led 
to an increase in diacylglycerols, products of triacylgly
cerol catabolism and the form in which lipids are gen
erally mobilized and transported in insects [51]. The 
dynamics of fat accumulation and consumption may 
differ in quiescent compared with diapausing species 
(Figure 3). As diapause termination is associated with 
high metabolic activity to resume development, more fat 
would be depleted during the termination phase of 
diapause, compared with the end of a quiescent state 
(Figure 3). For example, the moth Streltzoviella insularis 
does not seem to overwinter in a diapausing state [52]
and fat content of overwintering individuals does not 
seem to vary much [29]. Data showing fat content levels 
in quiescent species during winter are, however, mostly 
lacking. It would be interesting to fill this gap of 
knowledge by tracking fat accumulation patterns in re
lation to overwintering in more quiescent species. Field- 
collected Drosophila species would be ideal study 

Figure 2  

Current Opinion in Insect Science

Expected changes in reaction norms of fat synthesis and accumulation 
in parasitoids subjected to summer (green) or autumn (orange) 
conditions, when development occurs on fat or lean hosts.  
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systems to link ecological conditions to fat reserves, 
survival, and reproduction, as Drosophila species show a 
range of different dormancy statuses [48,53] (Figure 3).

Cold temperatures typically rigidify adipocytes in the fat 
body containing the insect’s fat reserves. Fat deposit 
rigidification can decrease triacylglycerol accessibility by 
enzymes, thereby hindering lipid metabolism. 
Consequently, modifications such as homeoviscous 
adaptation occur also in fat reserves in response to cold 
temperatures or following diapause induction (Figure 1). 
Specifically, an increase in unsaturation of fatty acid 
chains from triacylglycerols has been observed [54,55]. 
Interestingly, increased unsaturation of triacylglycerols 
in response to diapause in the moth Ostrinia nubilalis was 
correlated with a decrease in the melting temperature of 

the lipid pool [55]. This suggests an increased fluidity of 
fat reserves at cold temperatures that could be indicative 
of increased lipid mobilization.

The importance of remaining fat reserves in 
spring, and putative consequences of climate 
change
In insects, fat reserve quantities are correlated with fit
ness and related traits, including fecundity and dispersal: 
fatter females generally produce more offspring and can 
disperse further [56]. In the mosquito C. pipiens, fat re
serves are not entirely consumed during overwintering 
and actually exceed fat quantities observed in summer 
females [22]. These fat reserves may be critical to re
sume activity and reproduction in spring. In the gall fly, 
Eurosta solidaginis, females with the highest energetic 

Figure 3  

Current Opinion in Insect Science

Dynamic changes in fat content between an obligatory diapausing species (Cephalcia chuxiongica larvae, (a); data from Ref. [48]) and two species 
showing other types of dormancy (Drosophila obscura and D. subobscura, (b); data from Ref. [57]). (a) In diapausing species, fat accumulation 
typically occurs during the initiation phase. Fat reserves are then slowly consumed during diapause maintenance when metabolic activity is the lowest. 
During the termination phase, metabolic activity increases, using lipid stores as fuel; hence, the increased rate of fat reserve depletion. C. chuxiongica 
larvae go through a prolonged diapause program (20 months), but this pattern can also be observed in species diapausing during a single season (e.g. 
[10]). (b) In Drosophila flies, diapause status differs between species with some species showing developmental diapause, some showing reproductive 
diapause, and others no diapause at all [54]. D. obscura overwinters in reproductive diapause, while D. subobscura overwinters as quiescent adults. In 
these two species, fat reserves increase in preparation for winter, and then decrease at the end of winter and at spring. Diapausing adults from D. 
obscura contain more fat than quiescent adults from D. subobscura [57]. Of note is that this older study uses a ‘fat content score’ to quantify lipid 
reserves, which may not be as accurate as currently more common colorimetric/gravimetric measures.  
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reserves in spring also had the highest fecundity [57]. 
We know surprisingly little about the conditions under 
which individuals emerge following winter, even though 
we can expect intense selection for fatter and more fe
cund females. More studies on the effect of over
wintering conditions on fat reserves and fitness 
consequences in spring are now needed.

The current climate crisis will have a major impact on 
insects, where lipid metabolism to changing tempera
tures could be of critical importance. As temperatures 
increase during autumn or winter, metabolic rates are 
expected to increase that could accelerate the depletion 
of fat reserves, compromising winter survival and fitness 
in spring (Figure 1). For example, CaraDonna et al. [58]
manipulated the nesting temperature of wild diapausing 
Osmia ribifloris bees. By artificially increasing or de
creasing the nest temperature in the field, they simu
lated current and future climatic conditions. While 
current climatic conditions did not have a major effect on 
bees, future climatic conditions decreased fat content at 
emergence at the end of the diapausing period (but see 
Ref. [59] for an opposite trend in a butterfly). Similarly, 
in the Antarctic midge B. antarctica, simulating a 2°C 
increase of winter temperature decreased fat content 
during overwintering [60]. Considering the rate of tem
perature changes during autumn and winter due to 
global changes, studying the effects of warmer tem
peratures on fat reserves will be of importance for pre
dicting species responses to climate change.

Conclusions
Fat reserves are the fuel for insect overwintering; hence, 
most species build up considerably fat stores in pre
paration for winter in response to temperature or dor
mancy induction (Table 1). Several genes and enzymes 
belonging to diverse metabolic pathways affect lipid 
metabolism before and during winter in diapausing in
sects (Table 2), suggesting that different metabolic 
strategies can be used to regulate fat synthesis and ac
cumulation. Much research effort has been dedicated to 
diapausing species, but we know only little about the 
lipid dynamics during overwintering of species with 
other dormancy strategies (e.g. quiescence, reproductive 
diapause). Fat accumulation is also affected by factors 
other than temperature and dormancy, such as micro
biota abundance [43] or food abundance among micro
habitats [28]. Multiple biotic factors and potential 
stressors thus interact to affect lipid metabolism for 
overwintering. We expect that fat reserves at the onset 
of spring are a major determinant of fitness, but more 
empirical work is needed to quantify this. Current global 
changes may fasten fat consumption during autumn and 
winter following warming [58,60], with negative con
sequences for insect survival during overwintering and 
reproductive fitness in spring.
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