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Abstract
Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-
ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, 
about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the 
hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We 
predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid 
host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and 
infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as 
foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results 
showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an 
increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour 
through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two 
trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be 
affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.

Keywords Closterovirus · Trophic interactions · Semi-persistent virus · Host suitability · Plant quality · Disease vector · 
Cascading effect

Introduction

In complex food webs, each trophic level interacts directly 
or indirectly with other trophic levels, ultimately influenc-
ing the whole system. Trophic cascades, i.e., mutual con-
sumer–resource interactions that alter performance of more 

than one link in the food web (Knight et al. 2005), not only 
represent indirect effects of a higher trophic level on lower 
trophic levels, i.e., top-down effects, but lower trophic levels 
can also affect links higher up in the chain, i.e., bottom-up 
effects (Hunter and Price 1992; Johnson 2008). The effects 
of plant quality, mediated by plant biochemistry on the sec-
ond trophic level are well known and can affect food choice 
decisions, development, and fitness-related traits of herbiv-
orous insects (Crawley 1989; Awmack and Leather 2002; 
Ode 2006). For example, herbivore fitness was found to be 
improved when feeding on plants of higher quality (Sarfraz 
et al. 2009; Ismail et al. 2017), which corresponds to the 
plant vigour hypothesis proposed by Price (1991), i.e., herbi-
vores perform better on vigorous plants. Direct and indirect, 
positive and negative, effects of plants on herbivores can 
subsequently influence natural enemies of these herbivores 
(Price et al. 1980; Awmack and Leather 2002; Ode 2006; 
Poelman and Dicke 2014). Plant quality is, however, often 
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variable in response to abiotic and biotic factors, which may 
affect interactions in bottom-up, as well as top-down systems 
(Ode 2006), with cascading consequences at the community 
level (Kaplan et al. 2016). This is particularly true for koino-
biont parasitoids at the third trophic level that depend on the 
growth of their hosts for their own development (Turlings 
and Benrey 1998; Harvey and Gols 2011, 2018).

Studies examining the effects of plant quality on her-
bivorous insects and parasitoids have traditionally excluded 
pathogens, whilst research on the effects of pathogens has 
primarily focused on bacteria, fungi and viruses attacking 
herbivores (Harvey 2005). Insect host quality has, therefore, 
been based on direct pathogen effects, rather than indirect 
effects mediated by the plant. Parasitoids may thus suffer 
costs when developing on pathogen-infected hosts, through 
increased mortality (Hajek and van Nouhuys 2016) and 
development time, as well as reduced size, and an increase 
in time required to successfully attack infected hosts (Flick 
et al. 2016). The effect of plant pathogens, particularly 
viruses, on higher trophic levels has received much less 
attention (Finke 2012; Moiroux et al. 2018). Virus infec-
tion can indeed drastically affect the physiology and pho-
tosynthetic functioning of the host plant (Balachandran 
et al. 1997), the accumulation of nitrogen compounds, or 
expanded oxidase activities (Culver and Padmanabhan 
2007). These modified plant traits may in turn affect the 
behaviour of the insect vector (Blua et al. 1994; Fereres and 
Moreno 2009) and the vector’s natural enemies (Christian-
sen-Weniger et al. 1998; Mauck et al. 2015). Such virus-
induced changes could play a role in the ability of vectors 
to colonize new plants (Blua and Perring 1992; Castle et al. 
1998) and behaviours may be influenced by the virus through 
alteration of amino acid and carbohydrate concentrations in 
leaves or phloem sap (Jensen 1972; Castle and Berger 1993; 
Calvo and Fereres 2011). Physiological changes in plant 
defense responses might thus coincide with changes in plant 
quality (Li et al. 2002; Firlej et al. 2010) that could provoke a 
behavioural change in phytophagous insects and their natural 
enemies. Virus infection can further lead to changes in the 
plants’ volatile organic compound composition (Visser et al. 
1996; Bosque-Perez and Eigenbrode 2011; Wu et al. 2014), 
which could affect the behaviour of aphids that might prefer 
virus-infected plants over healthy ones (Mauck et al. 2010). 
Volatile compounds are further essential for the attraction of 
natural enemies (McCormick et al. 2012), and are particu-
larly important for mobile parasitoid foragers that need to 
collect information on resource quality and quantity through 
space and time (Bell 1990).

Here, we focused on the consequences of virus infection 
on plant biochemistry, as well as aphid and parasitoid fitness 
to decipher these complex relationships. Our model is the 
black bean aphid Aphis fabae Scopoli that can directly affect 
the growth and production of sugar beet (Beta vulgaris), as 

well as the storage of sugars directly by sucking plant sap 
(Volkl 1992; Albittar et al. 2016) and indirectly by transmit-
ting a plant virus (Beet yellows virus, BYV; Closteroviridae). 
It has been suggested that the virus infection could result in 
a 60% loss of sugar beet yield (Smith and Hallsworth 1990), 
and A. fabae is one of the main vectors of BYV (Watson 
et al. 1951). BYV is mainly transmitted in a semi-persistent 
manner, i.e., a non-circulative virus, that binds to the insect 
vector’s stylet or foregut (Ng and Falk 2006; Jiménez et al. 
2018), with a retention time of a few hours (Bragard et al. 
2013).

Lysiphlebus fabarum Marchal (Hymenoptera: Braconi-
dae: Aphidiinae) is the most abundant parasitoid of A. fabae 
in agro-ecosystems (Stary 1986). L. fabarum is a multivol-
tine species that is mainly thelytokous (i.e., females are 
produced parthenogenetically from unfertilized eggs) in 
central Europe (Nemec and Stary 1985) and responds to 
a variety of contact and olfactory cues associated with the 
host and its habitat (Jang et al. 2000; Carver and Franzmann 
2001). When assessing the fitness of insect natural enemies 
as potential biocontrol agents against pest populations, a 
detailed knowledge of the impact of trophic interactions in 
the field is essential. Foraging behaviour of parasitoids is 
strongly dependent on the environment in which they forage 
(Wajnberg et al. 2000; Pierre et al. 2012; Wajnberg 2012). 
However, the potential cascading effects of plant viruses on 
tritrophic interactions are still poorly understood in terms 
of behavioural changes, as well as fitness-related traits of 
female parasitoids. Despite the positive effects of L. fabarum 
on reducing aphid densities (increase of top-down regula-
tion), parasitized aphids were found to exhibit more move-
ments than unparasitized aphids, potentially causing an 
increase in virus spreading (Weber et al. 1996; Hodge and 
Powell 2008). It was further demonstrated that the presence 
of natural enemies can directly affect aphid behaviour (top-
down effect) through the formation of winged adults that can 
result in increased dispersal of aphids and associated plant 
viruses (Shaw 1973; Jeger et al. 2011; Dader et al. 2012). 
Plant viruses may further modulate bottom-up regulation, 
because virus infection affects plant development and sap 
composition (Jensen 1972; Fereres et al. 1990), as well as 
aphid development, growth rates, body size, reproduction, 
and longevity (Donaldson and Gratton 2007; Srinivasan 
et al. 2008; Jimenez-Martinez and Bosque-Perez 2009). As 
a consequence, virus infection of plants may affect parasitoid 
behaviour and fitness (Moiroux et al. 2018). The suitability 
of aphids as hosts for parasitoids is thus expected to depend 
on the infection status of the plant used for feeding.

We expected that within the trophic chain, BYV would 
affect the nutritional quality of plants (first trophic level) 
that would subsequently affect the performance and behav-
iour of aphids (second trophic level) and their parasitoids 
(third trophic level). More specifically, we predict that: (1) 
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virus-infected plants would present an increase in sugar 
and amino acid levels in phloem sap (Park et al. 2013; 
Mauck et al. 2015), (2) the herbivore individuals would 
present a larger body size and would have a higher lipid 
content when feeding occurs on infected plants (3) subse-
quently the size of emerging parasitoids would be affected 
and their host selection behaviour would be changed on 
aphids feeding on infected plants. To test these predic-
tions, we evaluated the amino acid and sugar content of 
control (healthy) and infected plants, lipid content and 
body size of aphids fed on both the plants as well as for-
aging behaviour and body size of parasitoids.

Materials and methods

Insect

The aphid Aphis fabae was obtained from the Laboratory 
of Functional and Evolutionary Entomology (Université de 
Liège-Gembloux) in Belgium and was reared continuously 
in pots containing broad beans (Vicia fabae). Aphids were 
maintained in wooden cages (50 × 50 × 50 cm) in climate 
rooms at a temperature of 20 ± 1 °C, relative humidity 
of 60 ± 10%, and a photoperiod 16L: 8D. The parasitoid 
Lysiphlebus fabarum (thelytokous strain IL07-64) was 
obtained from Professor C. Vorburger (Institute of Inte-
grative Biology, Zurich, Switzerland), and reared on A. 
fabae. Cohorts of parasitoids were produced by exposing 
second instar A. fabae to 2–3-day-old female wasps (one 
female for ten aphids) in a 50 × 50 × 30 cm wooden cage 
during 24 h. Eight to ten days later, mummies were care-
fully removed from leaves using a fine brush and isolated 
individually in microcentrifuge tubes until emergence. 
Parthenogenetic (i.e., asexual) females used in bioassays 
were less than 24 h of age and fed diluted honey. Parasi-
toids were maintained in a separate growth chamber at a 
temperature of 22 ± 1 °C, a relative humidity of 60 ± 10%, 
and a photoperiod of 16L: 8D.

Plants

Two plant species were used: (1) sugar beet, Beta vulgaris, 
Iranian strain MLD2-C651-F1C, cultivated at a density of 
one seed per pot (5 cm) to maintain the aphid rearing and 
perform experiments, and (2) broad bean, Vicia faba for 
which six seeds per pot (13 cm) were planted to continue 
development of aphids after experiments. Both plant cul-
tures were maintained in a greenhouse at 23 ± 2 °C, a rela-
tive humidity of 60 ± 10%, and a photoperiod of 16L: 8D.

Virus transmission

The BYV was obtained from sugar beet leaves collected 
from a field in Brasemenil, Belgium, at the end of August 
2014. Plant leaves (sugar beet) were collected according to 
the visual symptoms of BYV. The presence of the virus was 
then verified using RT-PCR as described in Stevens et al. 
(1997) using BYV strain PV-0981 from the DSMZ Ger-
man collection of microorganisms and cell cultures, using 
the following primers: forward BYVs GGT CGA CGG GAA 
GAT AGT CA and reverse BYVas TGT CTG AGC TAG TTC 
GAC AGA. Virus inoculation was conducted based on the 
method described in Weber et al. (1996) as follows: 20 sugar 
beet plants (6 weeks old) were inoculated with BYV using 
10 apterous adult A. fabae for each plant. Adult A. fabae 
were placed on an inoculated leaf (sugar beet leaves col-
lected from the field) and left on the plant for an acquisition 
period of 24 h. Individuals were then carefully transferred 
to healthy sugar beet plants with a fine brush and left for 
another inoculation period of 24 h. After the inoculation pro-
cess, aphids were removed and the presence of the virus on 
new plants was verified with RT-PCR 6 weeks later. Control 
(sham inoculated) plants were treated in the same way but 
using non-viruliferous aphids.

Sucrose and amino acid content in plant leaves

Phloem sap sampling

Fully expanded leaves were taken from plants for phloem 
sap sampling. For each treatment (control and infected), 
one independent sample from ten different plants was taken 
and quenched in 20 mm EDTA (ethylene diamine tetra ace-
tic acid) at pH 7.0, after which the sample was placed in a 
sealed desiccator in complete darkness for 16 h. The quan-
tity of supernatant obtained was 1 ml, 5 ml for each plant 
and then analysed according to (Lohaus and Schwerdtfeger 
2014) as described below.

Analysis of soluble carbohydrates

The identity and quantity of sugars and glycosides in leaves 
were determined by HPLC according to (Lohaus et al. 1995). 
An ion exchange column (CarboPAC10; Dionex Corp, Sun-
nyvale, CA, USA) was eluted with 60 mm NaOH (JT Baker 
Chemicals) (flow rate: 1 ml min−1) for 25 min. Sugars were 
detected by a pulse amperometric detector with a gold elec-
trode (ESA, Model 5200, Coulochem II, Bedford, USA). 
Pulse settings were set at 50 mV, 700 mV and 800 mV for 
400 ms, 540 ms and 540 ms, respectively. Sugar standards 
(Sigma-Aldrich, Germany) and antirrhinoside standards 
were measured in parallel (0–500 µM) and for each carbo-
hydrate, a calibration curve was made. Sugar concentrations 
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in phloem sap were calculated based on calibration curves 
and the recorded volume of each sample. The evaluation of 
chromatograms was performed with the integration program 
Peaknet 5.1 (Dionex).

Analysis of free amino acids

Amino acid assays were performed by HPLC (Pharmacia/
LKB) according to Riens et al. (1991). After pre-column 
derivatization with o-phthaldialdehyde, amino acid deri-
vates were separated on a 4 mm particle size reversed-phase 
column (Merck, Darmstadt, Germany) with an acetonitrile 
gradient in 18 mm potassium phosphate at a pH of 7.1. Deri-
vates were detected by fluorescence. Proline (a secondary 
amino acid) could not be detected with this method. Amino 
acid standards (Sigma-Aldrich, Germany) were measured 
in parallel (0–20 µM) and for each amino acid a calibration 
curve was made. The evaluation of chromatograms was per-
formed with the integration program Peaknet 5.1 (Dionex). 
We then calculated the ratio of total sugars to total amino 
acids.

Tibia size of aphids and parasitoids

To evaluate the development of aphids on infected and con-
trol leaves of sugar beet as well as the effect of the host on 
parasitoid development, hind tibia length of the first pair 
of legs (as a proxy for size) (Godfray 1994) was measured 
under a binocular microscope (Leica MZ6) linked to a video 
camera (Sony, model nb: SSC-DC198P) for 40 larvae (L3) 
of A. fabae reared on each type of plant since birth. The 
same procedure was used to determine the size of 26 adult 
parasitoids that emerged from mummies reared on control 
plants and 19 adult parasitoids that emerged from mummies 
reared on infected plants.

Lipid determination

Aphid fat content was measured for 40 larvae (L3) (8 rep-
licates of 5 pooled larvae), using the vanillin assay with 
triolein (92860; Sigma) as a standard (Van handel 1985). 
Vanillin assays were confirmed to be a reliable technique 
for the determination of lipid content in insects (Williams 
et al. 2011). Vanillin reagent was prepared by mixing vanil-
lin (V2375; Sigma) with ortho-phosphoric acid 68%, reach-
ing a final concentration of 1.2 g/L. For the assay, 100 µL of 
supernatant (samples of aphids crushed in 150 µl of chlo-
roform: methanol (1:2)) was transferred into a borosilicate 
microplate well and heated at 90 °C until complete evapora-
tion. Ten microliters of 98% sulphuric acid were then added 
to each well and the microplate placed again at 90 °C for 
2 min in a water bath. After cooling of the microplate on 
ice, 190 µL of vanillin reagent was added to each well. The 

plate was homogenized, incubated at room temperature for 
15 min and absorbance measured with a spectrophotometer 
(brand) at 525 nm (Foray et al. 2012).

Behavioural assays

To obtain L3 synchronized larvae of A. fabae, 10 apterous 
adult aphids from each culture (control and infected) were 
transferred onto a 4-week-old sugar beet plant with similar 
infection status. Every 24 h, these ten apterous adults were 
transferred to a new sugar beet plant with similar infection 
status. Newly laid larvae were then reared for 3–4 days 
until used for the experiments. To test whether L. fabarum 
females were able to discriminate between aphids reared on 
control or infected plants, L. fabarum females aged ≤ 24 h 
were individually exposed to a group of ten aphids (L3) for 
30 min. Three different treatments were tested, including 
two no-choice experiments with ten A. fabae individuals 
(non-viruliferous) born and reared on a control plant and ten 
A. fabae individuals born and reared on an infected plant, 
and a choice experiment with five individuals of A. fabae 
born and reared on a control plant and five individuals of 
A. fabae born and reared on infected plants (Fig. 1). Female 
parasitoids were individually observed on each type of plant. 
One leaf disc (diameter = 2 cm) was placed in the middle of 
a glass Petri dish (diameter = 15 cm) and surrounded by a 
red circle (diameter = 9 cm) indicating the limit of the patch. 
Once this limit was crossed, the parasitoid was considered 
to have left the patch. The experimental arena was placed 
on a light table (2500 LUX) in a dark room at 20 ± 1 °C). 
Each experiment was repeated 25 times. In the dual choice 
experiment, aphids reared on control plants and those reared 
on infected plants were placed on two different discs of beet 
leaves (diameter = 5 mm for control and infected plants). 
During the experiment, aphids did not move from the disc 
leaf on which they were initially placed. Female parasitoids 
were given the choice to select aphids reared on control 
plants or on virus-infected plants or to reject both, where 
certain behaviours (antennal contact, ovipositor contact) 
were observed when aphids were attacked by parasitoids. 
For all experiments, the patch residence time (defined as 
the total time between entering and leaving the patch) was 
recorded, as well as the number of antennal contacts and ovi-
positor insertions, using the software “JWatcher_V1.0”. At 
the end of each observation, tested aphids were transferred 
to fresh leaves of bean plants placed on a piece of cotton 
wool soaked with water in plastic Petri dishes, and reared 
under controlled conditions (22 ± 1 °C, 60 ± 10% R.H) for 
12 days until mummification. Bean leaves were used for the 
rearing to avoid any potential bias due to the infected status 
of the beet plant prior to experiments. We thus also recorded 
the number of mummies produced for each experiment. The 
emergence rate was expressed as the number of emerged 
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parasitoid wasps divided by the total number of mummies. 
Fitness gain curves were plotted using data on the cumula-
tive number of ovipositor insertions according to residence 
time (each 5 min).

Statistical analyses

Statistical analyses were done using the statistical software 
R version 3.5.0 (2018-04-23) (R Core Team 2018). Sugar 
and amino acid content, total sugar, total amino acids and the 
ratio of total sugar to total amino acids of four samples per 
treatment were analysed using the Mann–Whitney U test and 
data were presented by the median and interquartile range 
(IQR). Patch residence times were analysed and compared 
using a Cox proportional hazard model (Cox 1972; Collett 
1994) with plant treatment as a fixed factor. The number of 
antennal contacts and ovipositor insertions were analysed 
using GLM (general linear model with a Poisson distribu-
tion) with plant treatment as a fixed factor. Emergence rate 
was analysed using GLM (with a binomial distribution) 
with plant treatment as a fixed factor. Significant results at 
p < 0.05 were followed by a Tukey HSD post hoc multi-
ple comparison test. Aphid and parasitoid tibia length were 
normally distributed and analysed using t test (data were 
presented as mean ± se). Lipid content data were not nor-
mally distributed and analysed using Mann–Whitney U test, 
with data being presented as median and IQR. To estimate 
the fitness gain during a parasitoid’s visit of a patch (based 
on the number of aphids stung), general linear models were 
used with a negative binomial distribution (for overdisper-
sion data) using the GLM.nb function in the MASS package, 

with time and plant treatment as fixed factors. The results of 
no-choice and choice experiments were analysed separately.

Results

Amino acid and carbohydrate content

The total concentration of amino acids was lower in infected 
plants compared to control plants. The amino acid composi-
tion differed between control and infected plants for 5 out 
of 17 plants. Only the concentration of histidine was higher 
in control plants than in infected plants, whereas the other 
amino acid concentrations were higher in infected com-
pared to control plants, i.e., alanine, arginine, phenylalanine 
valine, tryptophan (Table 1). Total sugar amount increased 
significantly in infected plants compared to control plants 
(~ five times more) (Table 2). Glucose, fructose and sucrose 
amounts were significantly higher in infected plants (7.15, 
40.65 and 1.68 times more, respectively) compared to con-
trol plants (Table 2). The ratio of total sugars to total con-
centration of amino acids increased significantly in infected 
plants compared to control plants (Table 2).

Aphid tibia length and lipid content

Aphids reared on control plants had significantly smaller 
hind tibias than individuals reared on infected plants 
(t = − 4.67, df   = 81.73, p < 0.001) (Fig. 2). There was no sig-
nificant difference in lipid content: control = 92.35 (11.58) vs 
infected plants = 77.50 (27.52) (W = 39, p = 0.51).

Fig. 1  Experimental design for the behavioural assays of female parasitoids



 Oecologia

1 3

Tibia length of emerged parasitoids

No significant difference was observed in tibia length 
between recently emerged female parasitoids that devel-
oped on aphids reared on control plants (0.38 mm ± 0.01) 

or infected plants (0.38 mm ± 0.01) (t = − 0.08, df = 40.59, 
p = 0.94).

Parasitoid host selection behaviour: no‑choice 
experiments

More antennal contacts were recorded for females offered 
aphids reared on infected plants compared to aphids reared 
on control plants (χ2 = 1.98, df   = 1, p < 0.001) (Table 3). 
No significant differences were found in the number of ovi-
positor insertions (χ2 = 0.06, df  = 1, p = 0.80), nor in the 
number of collected mummies (χ2 = 0.35, df  = 1, p = 0.55) 
between the two patches (Table 3). Emergence rate of L. 
fabarum from mummies did not significantly vary between 
the infected and control treatments (χ2 = 3.31, df  = 1, 
p = 0.07) (Table 3). The increase in residence time of para-
sitoid females in infected plants was not significantly differ-
ent from control plants (χ2 = 0.16, df  = 1, p = 0.68) (Fig. 3; 
Table 3).

Parasitoid host selection behaviour: choice 
experiment

The number of antennal contacts observed (χ2 = 405.59, 
df  = 1, p < 0.001), as well as the number of ovipositor inser-
tions increased significantly when females were offered 
aphids reared on infected plants compared to aphids reared 
on control plants (χ2 = 6.21, df  = 1, p = 0.01) (Table 4). 
There was no significant difference in the number of mum-
mies between the two patches (χ2 = 0.001, df  = 1, p = 0.98), 
nor did the emergence success differ (χ2 = 0.14, df  = 1, 
p = 0.70) (Table 4). Female parasitoids did not exhibit any 
preference between the two patches and the residence time 
of females did not vary significantly between the two patches 
(χ2 = 0.10, df  = 1, p = 0.74) (Fig. 3; Table 4).

Table 1  Amino acid concentrations (µM = µmol/L) in control and 
infected plants

Data are presented as median with IQR. Significant effects are in bold 
and letters indicated significant differences
c Essential amino acids
d Non-essential amino acids
e Conditionally essential amino acids

Control plants Infected plants t test

Alanined 1.40 (0.50) b 3.55 (0, 83) a W = 0, p = 0.02*
Aspartic  acidd 13.00 (7.58) a 7.10 (2, 20) a W = 16, p = 0.02*
Asparagined 1.30 (0.55) a 1.70 (0, 40) a W = 6, p = 0.66
Glutamic  acidd 7.00 (1.75) b 11.40 (2, 13) a W = 0, p = 0.02*
Serined 3.15 (0.98) a 2.20 (0, 95) a W = 9, p = 0.895
Argininee 0.10 (0) b 0.60 (0, 18) a W = 0, p= 0.02*
Glycinee 4.10 (0.75) a 4.35 (1, 33) a W = 7, p = 0.88
Glutaminee 8.65 (6.33) a 3.10 (1, 20) a W = 14, p = 0.11
Tyrosinee 0.35 (0.05) – No test, no val-

ues for infected 
plant

Histidinec 144.00 (3.88) a 89.30 (2, 65) b W = 16, p= 0.02*
Isoleucinec 0.60 (0.15) a 0.95 (0, 55) a W = 3, p = 0.19
Leucinec 1.05 (0.23) a 1.45 (0, 28) a W = 3.5, p = 0.24
Lysinec 0.45 (0.10) b 0.70 (0, 03) a W = 0, p = 0.02*
Methioninec 0.15 (0.10) a 0.20 (0, 03) a W = 9, p = 0.89
Phenylalaninec 0.20 (0.03) b 0.55 (0, 15) a W = 0.5, 

p = 0.03*
Threoninec 1.10 (0.65) a 1.50 (0, 65) a W = 7.5, p = 0.99
Tryptophanc 0.35 (0.45) a 0.90 (0, 58) a W = 3, p = 0.20
Valinec 1.05 (0.23) b 2.00 (0, 30) a W = 0, p= 0.02*
Total 187.95 (21.05) a 131.70 (8, 

50) b
W = 16, p = 0.02*

Table 2  Sugar concentrations (µM = µmol/L) in control and infected 
plants

Data are presented as median with IQR. Significant effects are in bold 
and letters indicated the significant differences

Control Virus t test

Glucose 51.85 (13, 68) b 370.85 (38, 50) a W = 0, p = 0.02*
Fructose 10.95 (3, 90) b 445.15 (25, 78) a W = 0, p = 0.02*
Sucrose 129.30 (66, 33) b 217.80 (34, 45) a W = 0, p = 0.02*
Total 192.90 ± (71, 35) b 1061.70 (60, 13) a W = 0, p = 0.01*
Ratio total 

sugar/total 
amino acid

1.10 (0, 34) b 8.21 (1, 05) a W = 0, p = 0.02*
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Fig. 2  Length of hind tibia size (mean ± se) of individuals of A. 
fabae reared on control and infected plants. Letters indicated signifi-
cant differences (p < 0.05)
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Fitness gain

In no-choice experiments, the fitness gain curve for 
female parasitoids in both control and infected plants 
increased significantly with time (χ2 = 607.32, p < 0.001). 
The number of parasitoid stings in aphids was, however, 
not significantly different between treatments (χ2 = 5.35, 
p = 0.07) (Fig.  4a). In the choice experiment, fitness 
gain curves of females also increased significantly with 
time (χ2 = 1523.98, p < 0.001). The number of stings of 
parasitoids in aphids was further significantly higher in 
aphids reared on infected plants compared to controls 
(χ2 = 20.30, p < 0.001) (Fig. 4b).

Discussion

In this study, we investigated bottom-up effects of a plant 
virus on higher trophic levels, from the plant (first trophic 
level) up to natural enemies (third trophic level). We 
expected an increase in sugar and amino acid levels in the 
phloem sap of virus-infected plants, and consequently an 
increase in aphid size and lipid content. This in turn could 
affect the size of emerging parasitoids and affect host selec-
tion behaviours towards aphid fed on infected plants. In 
our pathosystem, consisting of the BYV, the host plant 
B. vulgaris, the vector aphid A. fabae, and the parasitoid 
L. fabarum, our predictions were partially validated. We 
showed that plant infection with BYV induced an increase 
in sugars, but a decrease in total amino acids, in the host 
plant B. vulgaris. Plant infection further led to an increase 
in aphid size, without modifying host quality (i.e., lipid con-
tent), and affected the behaviour of parasitoids by triggering 
an increase in the number of parasitoid antennal contacts. 
Moreover, when offered a choice between hosts developed 
on infected vs control plants, more ovipositor insertions 
were observed on aphids reared on infected compared to 
control plants. We found no influence, however, of the virus 
on the development or emergence of parasitoids.

Plant quality

It is well known that plant viruses provoke changes in plant 
metabolism, including nitrogen and carbohydrate content 
(Bozarth and Diener 1963; Markkula and Laurema 1964; 
Blua et al. 1994; Mauck et al. 2015). The BYV virus can 
affect the physiology and growth of beet plants, which affect 
the plants’ photosynthetic activity: damage to the photosyn-
thetic mechanism is at least partly caused by the reduction 
in net photosynthesis, therefore inducing an alteration in the 
quality of the phloem sap in terms of primary metabolites 
(Clover et al. 1999). In line with these findings, we showed 

Table 3  Median with IQR of several behaviour indices, and fitness traits of the parasitoid L. fabarum in no-choice experiments

Residence time (min) No. of antennal contact No. of ovipositor 
insertions

No. of mummies Emergence rate

Infected plants 23.38 ± 11.00 a 104.00 ± 33.11 a 11.00 ± 7.24 a 2.00 ± 1.38 a 0.99 ± 0.16 a
Control plant 11.41 ± 11.11 a 34.00 ± 114.93 b 15.50 ± 8.15 a 3.00 ± 1.94 a 0.75 ± 0.204 a
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Fig. 3  Proportion of female parasitoids remaining inside the patches 
of plants (control and infected plants) according to time in both 
experiments (no-choice and choice). In choice experiments, females 
had the choice to select a control or a virus-infected patch or to reject 
both

Table 4  Median with IQR of several behaviour indices, and fitness traits of the parasitoid L. fabarum in choice experiments

Residence time (min) No. of antennal contact No. of ovipositor insertions No. of mummies Emergence rate

Infected plants 30.00 ± 7.79 a 459.00 ± 261.94 a 19.50 ± 11.07 a 1.00 ± 1.20 a 1.00 ± 0.39 a
Control plant 30.00 ± 10.02 a 174.00 ± 205.80 b 8.00 ± 7.70 b 1.00 ± 1.22 a 0.75 ± 0.37 a
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that beet quality, estimated by amino acid and sugar con-
centrations, changed following BYV infection. Changes in 
amino acid levels could have resulted from the accumula-
tion of  NH2 in infected plants, which might interfere with 
virus synthesis, and impact cyclical changes on infectiv-
ity (Selman et al. 1961). In our study, the concentration of 
total amino acids was lower in infected plants, and this was 
mainly due to the drastic decrease in histidine content. How-
ever, we did observe an increase in three essential amino 
acids (lysine, valine and phenylalanine).

Studies have generally reported a positive relationship 
between virus infection and sucrose content (Goodman 
et al. 1965; Park et al. 2013). Our results also revealed a 
strong increase in sugars (glucose, fructose and sucrose) in 
BYV-infected plants compared to control plants. In plants, 
both sucrose and starch are produced during photosynthe-
sis. Sucrose is important for plant growth and development 
and is considered the major transport form of carbohydrates. 
Moreover, following pathogen infection, sucrose is involved 
in plant defense by activating immune responses against 
pathogens (Tauzin and Giardina 2014) and sucrose remains 
present in plants (Herbers et al. 2000) due to a degradation 
of starch content (Engelsdorf et al. 2013). Increased sugar 
content could help the virus to reallocate plant sugars to 

meet their own metabolic needs (Tauzin and Giardina 2014), 
which is essential for obtaining the energy required for viral 
replication (Kassanis 1953; Park et al. 2013).

Aphid and parasitoid size

Aphids were bigger on infected compared to uninfected 
plants. Infected plants showed an increase in essential amino 
acids (lysine, valine and phenylalanine) and two non-essen-
tial amino acids (alanine and glutamic acid). The increase 
in non-essential amino acids, particularly the glutamic acid, 
might be more important for aphids than essential amino 
acids. It was demonstrated that glutamic acid was used as 
a precursor for the Buchnera sp., biosynthesis pathways of 
essential amino acids: isoleucine, leucine, lysine, threonine, 
phenylalanine and valine (Febvay et al. 1995; Sasaki and 
Ishikawa 1995; Douglas et al. 2001), thus contributing to the 
net protein growth of A. fabae (Douglas 1997, 1998). Russell 
et al. (2014) proposed that the essential amino acids biosyn-
thetic capability of Buchnera was determined by the availa-
bility of precursors from the host. The increase in aphid size 
could also be due to a higher consumption of phloem sap 
on infected plants, as it contained a higher concentration of 
phagostimulant sugars (Mauck et al. 2015). Weibull (1990) 
found, for example, that sucrose was the strongest phago-
stimulant for the bird cherry-oat aphid, Rhopalosiphum padi, 
and Campbell et al. (1986) reported that three aphid species, 
the greenbug Schizaphis graminum, the pea aphid Acyrtho-
siphon pisum, and the green peach aphid Myzus persicae, 
displayed positive feeding responses to glucose. Increased 
sucrose could, however, also negatively affect aphid growth 
(Abisgold et al. 1994). For example, Pescod et al. (2007) 
demonstrated that population growth of three aphid spe-
cies decreased with higher sucrose concentrations in plant 
phloem sap. The increased sucrose concentration could also 
explain why there was no increase in lipid content between 
aphids reared on control vs BYV-infected plants, i.e., the 
aphid may not be able to convert sucrose into lipids with any 
greater efficiency. Moreover, Fiebig et al. (2004) found that 
individuals of the aphid Sitobion avenae had a lower effi-
ciency in phloem sap utilization when fed on plants infected 
by barley yellow dwarf virus (Luteoviridae).

In aphid parasitoids, host size is often a reliable meas-
ure of parasitoid size (Sequeira and Mackauer 1992, 1993; 
Mackauer et  al. 1996; Harvey et  al. 2012). Our results 
showed, however, that despite the bigger size of aphids on 
infected plants, emerged parasitoids were not bigger. This 
means that aphids reared on infected plants may not repre-
sent higher-quality hosts for parasitoids. With the exception 
of oxidation into carbon dioxide, lipids in aphid tissues are 
the main destination of dietary sucrose. Febvay et al. (1999) 
showed a positive relationship between ingested sucrose 
by aphids and lipid production. Aphid host lipid content is 
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particularly crucial for parasitoid larvae as they lack lipo-
genesis, and consequently parasitoids depend entirely on 
the host for obtaining this resource (Visser and Ellers 2008; 
Visser et al. 2010). Although host aphids were bigger when 
reared on infected compared to uninfected plants, lipid con-
tent did not vary. This could explain why the size of parasi-
toid individuals remained unaffected.

Parasitoid behaviour

The effects of phytoviruses in tritrophic interactions have 
been only slightly investigated, and those studies that were 
performed mainly focused on physiological traits, with little 
attention on behavioural responses of the third trophic level. 
Our study revealed that some components of L. fabarum host 
selection behaviour were altered when wasps were reared on 
A. fabae feeding from BYV-infected plants, particularly in 
the choice experiment. We observed a significant increase in 
the number of wasp antennal contacts in no-choice experi-
ments, as well as ovipositor insertions in the choice experi-
ment, for aphids reared on infected plants. Although anten-
nation behaviour may not elicit aphid movement, oviposition 
behaviour might, leading to a disturbance in the aphids 
and potentially the production of alarm pheromones. Such 
dispersal following parasitoid oviposition was previously 
shown to be of importance for spreading the virus in other 
systems (Hodge et al. 2011; Jeger et al. 2011; Dader et al. 
2012). However, Rasekh et al. (2010b) mentioned that the 
attack behaviour of L. fabarum on A. fabae was not aggres-
sive and did not result in any overt injuries, nor did it appear 
to repel the recipients or induce their dispersal. There thus 
seems to be little to no risk regarding the spread of the virus 
due to release of L. fabarum.

Lysiphlebus fabarum is an interesting species that 
has adapted to feed and reproduce on aphid colonies, for 
instance, through honeydew solicitations by mimicking 
ants (the parasitoid mimics ants by stroking aphids with 
their antennae (Rasekh et al. 2010b). Rasekh et al. (2010a) 
showed that female parasitoids spent a third of their time 
soliciting honeydew, and at the same time, were able to 
reduce aphid defensive reactions during ovipositor inser-
tions. We can, therefore, hypothesize that honeydew com-
position of aphids reared on infected plants was modified, 
according to the modified primary metabolite composition 
in sieve elements. Honeydew as a food source is not only 
attractive for parasitoids, but also for predators. As a result 
of virus infection, the composition of honeydew produced by 
aphids may change. For example, Ajayi and Dewar (1982) 
showed that individuals of S. avenae and Metopolophium 
dirhodum Walker (Hemiptera: Aphididae) excreted sig-
nificantly less honeydew on plants infected with barley 
yellow dwarf virus (Luteoviridae) than on healthy plants. 
In contrast, van den Heuvel and Peters (1990) showed that 

individuals of M. persicae, feeding on infected plants by 
potato leafroll virus (Luteoviridae), produced more hon-
eydew on infected compared to healthy plants. Regarding 
honeydew quality, Magyarosy and Mittler (1987) demon-
strated that phloem sap in beet infected with beet curly top 
virus (Geminiviridae) had a higher sucrose concentration 
than uninfected beets. The higher number of parasitoid 
antennal contacts for honeydew solicitation could thus be a 
consequence of an increase in quality and quantity of aphid 
honeydew produced on infected plants. Differences in wasp 
antennation may also depend on aphid size. Indeed, Wu et al. 
(2011) showed that handling time (from first contact to ovi-
position) of Aphidius colemani on the aphid M. persicae 
increased with host size. As aphids on virus-infected plants 
were larger, there may be a greater suitability for the para-
sitoids. In addition, parasitoid emergence did not depend on 
the infection status of the plants, and no differences were 
found in parasitoid size, highlighting the fact that a negative 
effect on larval development is unlikely.

Cascading effects of the plant virus on the plant–aphid 
interaction may depend on the mode of transmission: persis-
tent viruses tend to improve host plant quality for aphid vec-
tors and promote long-term feeding, whereas non-persistent 
viruses tend to reduce plant quality and promote rapid aphid 
dispersal (Mauck et al. 2012). Accordingly, pronounced 
effects of infected plants mediated by the aphids on some 
life history traits of parasitoids were highlighted by several 
authors, particularly the cascading effects on tritrophic inter-
actions (plant–aphid interaction) of non-persistent cucumber 
mosaic virus (Bromoviridae) and persistent turnip yellows 
virus (Luteoviridae) (de Oliveira et al. 2014; Mauck et al. 
2015; Moiroux et al. 2018). However, to our knowledge, 
no study has assessed the impact of semi-persistent viruses 
on the foraging behaviour of parasitoids. In our study on 
the semi-persistent virus BYV, infected plants represented 
a good source for aphid nutrition, but the cascading effect 
of this virus on parasitoid behaviour was only secondary, as 
it did not affect parasitism and emergence rates. In conclu-
sion, our results on cascading effects of a semi-persistent 
virus within a tritrophic system showed that the first trophic 
level (plant) was strongly affected at the biochemical level, 
while the second trophic level (aphid) was affected in terms 
of size, whereas the third trophic level (parasitoids) was 
only partly affected in its behaviour. For the latter, there was 
an impact on parasitoid host selection, in particular in the 
choice experiment, yet no impact on their potential fitness. 
In the future, electrical penetration graph experiments could 
be performed to evaluate the ingestion of aphids feeding on 
infected beet plants, as well as quantitative and qualitative 
analyses of the honeydew produced from aphids feeding 
on infected plants. The agronomical consequences of our 
results are that the parasitoid L. fabarum does not seem to 
be affected by the virus and may thus contribute to a more 
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targeted biological control of BYV by disproportionately 
affecting virus-carrying vectors, and reducing the proportion 
of vectors in the population that are infectious.
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