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Inbreeding, or mating between relatives, generally lowers fitness [1]. Mating 
between genetically similar individuals can result in higher levels of homozygosity 
and consequently a higher frequency with which recessive disease alleles may be 
expressed within a population. Reduced fitness as a consequence of inbreeding, or 
inbreeding depression, can vary between individuals, sexes, populations and 
species [2], but remains a pervasive challenge for many organisms with small local 
population sizes, including humans [3]. But all is not lost for individuals within 
small populations, because an array of mechanisms can be employed to evade the 
negative effects of inbreeding [4], including sib-mating avoidance and dispersal [5, 
6].  

Despite thorough investigation of inbreeding and sib-mating avoidance in the 
laboratory, only very few studies have ventured into the field besides studies on 
vertebrates and eusocial insects. The study of Collet et al. [7] is a surprising 
exception, where the effect of male density and frequency of relatives on 
inbreeding avoidance was tested in the laboratory, after which robust field 
collections and microsatellite genotyping were used to infer relatedness and 
dispersal in natural populations. The parasitic wasp Venturia canescens is an 
excellent model system to study inbreeding, because mating success was 
previously found to decrease with increasing relatedness between mates in the 
laboratory [8] and this species thus suffers from inbreeding depression [9–11]. 
The authors used an elegant design combining population genetics and model 
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simulations to estimate relatedness of mating partners in the field and compared that with a 
theoretical distribution of potential mate encounters when random mating is assumed. One of the 
most important findings of this study is that mating between siblings is not avoided in this species in 
the wild, despite negative fitness effects when inbreeding does occur. Similar findings were obtained 
for another insect species, the field cricket Gryllus campestris [12], which leaves us to wonder whether 
inbreeding tolerance could be more common in nature than currently appreciated.  

The authors further looked into sex-specific dispersal patterns between two patches located a few 
hundred meters apart. Females were indeed shown to be more related within a patch, but no genetic 
differences were observed between males, suggesting that V. canescens males more readily disperse. 
Moreover, microsatellite data at 18 different loci did not reveal genetic differentiation between 
populations approximately 300 kilometers apart. Gene flow is thus occurring over considerable 
distances, which could play an important role in the ability of this species to avoid negative fitness 
consequences of inbreeding in nature.  

Another interesting aspect of this work is that discrepancies were found between laboratory- and 
field-based data. What is the relevance of laboratory-based experiments if they cannot predict what 
is happening in the wild? Many, if not most, biologists (including us) bring our model system into 
the laboratory to control, at least to some extent, the plethora of environmental factors that could 
potentially affect our system (in ways that we do not want). Most behavioral studies on mating 
patterns and sexual selection are conducted in standardized laboratory conditions, but sexual 
selection is in essence social selection, because an individual’s fitness is partly determined by the 
phenotype of its social partners (i.e. the social environment) [13]. The social environment may 
actually dictate the expression of female mate choice and it is unclear how potential laboratory-
induced social biases affect mating outcome. In V. canescens, findings using field-caught individuals 
paint a completely opposite picture of what was previously shown in the laboratory, i.e. sib-
avoidance is not taking place in the field. It is likely that density, level of relatedness, sex ratio in the 
field, and/or the size of experimental arenas in the lab are all factors affecting mate selectivity, as we 
have previously shown in a butterfly [14–16]. If females, for example, typically only encounter a few 
males in sequence in the wild, it may be problematic for them to express choosiness when 
confronted simultaneously with two or more males in the laboratory. A recent study showed that, in 
the wild, female moths take advantage of staying in groups to blur male choosiness [17]. It is 
becoming more and more clear that what we observe in the laboratory may not actually reflect what 
is happening in nature [18]. Instead of ignoring the species-specific life history and ecological 
features of our favorite species when conducting lab experiments, we suggest that it is time to accept 
that we now have the theoretical foundations to tease apart what in this “environmental noise” 
actually shapes sexual selection in nature. Explicitly including ecology in studies on sexual selection 
will allow us to make more meaningful conclusions, i.e. rather than “this is what may happen in the 
wild”, we would be able to state “this is what often happens in nature”.     
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